Interplay among Gcn5, Sch9 and Mitochondria during Chronological Aging of Wine Yeast Is Dependent on Growth Conditions
نویسندگان
چکیده
Saccharomyces cerevisiae chronological life span (CLS) is determined by a wide variety of environmental and genetic factors. Nutrient limitation without malnutrition, i.e. dietary restriction, expands CLS through the control of nutrient signaling pathways, of which TOR/Sch9 has proven to be the most relevant, particularly under nitrogen deprivation. The use of prototrophic wine yeast allows a better understanding of the role of nitrogen in longevity in natural and more demanding environments, such as grape juice fermentation. We previously showed that acetyltransferase Gcn5, a member of the SAGA complex, has opposite effects on CLS under laboratory and winemaking conditions, and is detrimental under the latter. Here we demonstrate that integrity of the SAGA complex is necessary for prolonged longevity, as its dismantling by SPT20 deletion causes a drop in CLS under both laboratory and winemaking conditions. The sch9Δ mutant is long-lived in synthetic SC medium, as expected, and the combined deletion of GCN5 partially suppresses this phenotype. However it is short-lived in grape juice, likely due to its low nitrogen/carbon ratio. Therefore, unbalance of nutrients can be more relevant for life span than total amounts of them. Deletion of RTG2, which codes for a protein associated with Gcn5 and is a component of the mitochondrial retrograde signal, and which communicates mitochondrial dysfunction to the nucleus, is detrimental under laboratory, but not under winemaking conditions, where respiration seems not so relevant for longevity. Transcription factor Rgm1 was found to be a novel CLS regulator Sch9-dependently.
منابع مشابه
Wine yeast sirtuins and Gcn5p control aging and metabolism in a natural growth medium.
Grape juice fermentation by wine yeast is an interesting model to understand aging under conditions closer to those in nature. Grape juice is rich in sugars and, unlike laboratory conditions, the limiting factor for yeast growth is nitrogen. We tested the effect of deleting sirtuins and several acetyltransferases to find that the role of many of these proteins during grape juice fermentation is...
متن کاملA molecular mechanism of chronological aging in yeast.
The molecular mechanisms that cause organismal aging are a topic of intense scrutiny and debate. Dietary restriction extends the life span of many organisms, including yeast, and efforts are underway to understand the biochemical and genetic pathways that regulate this life span extension in model organisms. Here we describe the mechanism by which dietary restriction extends yeast chronological...
متن کاملConserved role of medium acidification in chronological senescence of yeast and mammalian cells
yeast chronological life span (CLS) model has led to the identification of the pro-aging effects of the TOR-Sch9 /S6K and Ras-Adenylate cyclase-PKA pathways, components of which play conserved role in nutrient sensing and aging in mammals [1-4]. One of the early changes that occurs in yeast cells grown in media containing 2% glucose and excess amino acids is the production of acetic acid and ac...
متن کاملSch9 kinase integrates hypoxia and CO2 sensing to suppress hyphal morphogenesis in Candida albicans.
The yeast-hypha transition is an important virulence trait of Candida albicans. We report that the AGC kinase Sch9 prevents hypha formation specifically under hypoxia at high CO(2) levels. sch9 mutants showed no major defects in growth and stress resistance but a striking hyperfilamentous phenotype under hypoxia (<10% O(2)), although only in the presence of elevated CO(2) levels (>1%) and at te...
متن کاملTethering telomerase to telomeres increases genome instability and promotes chronological aging in yeast
Chronological aging of the yeast Saccharomyces cerevisiae is attributed to multi-faceted traits especially those involving genome instability, and has been considered to be an aging model for post-mitotic cells in higher organisms. Telomeres are the physical ends of eukaryotic chromosomes, and are essential for genome integrity and stability. It remains elusive whether dysregulated telomerase a...
متن کامل